Reinforcement Learning for Stock trading

Rohan Saphal
August 11, 2018

1 Introduction

The academic deep learning and reinforcement learning research community has largely stayed
away from the financial markets. Possible reasons are, the finance industry has a bad reputation,
the problem doesn’t seem interesting from a research perspective, or because data is difficult and
expensive to obtain. In this brief report, I hope to argue that training Reinforcement Learning
agents to trade in the financial (and cryptocurrency) markets can be an extremely interesting
research problem. I believe that it has not received enough attention from the research community
but has the potential to push the state-of-the art of many related fields. It is quite similar to
training agents for multiplayer games such as DotA, and many of the same research problems
carry over. I hope to convey on a more high level about why learning to trade using machine
learning is difficult, what some of the challenges are, and where I think reinforcement learning fits
in.

2 A few trading strategy metrics

When developing trading algorithms, what are they optimized for? The obvious answer is profit,
but if looked at more closely, the profit is the end result or the effect of the optimization process
on some metrics. Metrics are also required in order to compare trading strategy to baselines, and
compare its risk and volatility to other investments. Here are a few of the most basic metrics that
traders are using:

e Net PnL (Net Profit and Loss)

— Simply how much money an algorithm makes (positive) or loses (negative) over some
period of time, minus the trading fees.

e Alpha and Beta

— Alpha defines how much better, in terms of profit, the strategy is when compared to an
alternative, relatively risk-free, investment, like a government bond. Even if the strategy
is profitable, it could be better off investing in a risk-free alternative. Beta is closely
related, and tells how volatile the strategy is compared to the market. For example, a
beta of 0.5 means that the investment moves Rs 1 when the market moves Rs 2.

e Sharpe Ratio

— The Sharpe Ratio measures the excess return per unit of risk taken. It’s basically the
return on capital over the standard deviation, adjusted for risk. Thus, the higher the
better. It takes into account both the volatility of the strategy, as well as an alternative
risk-free investment.

e Maximum Drawdown

— The Maximum Drawdown is the maximum difference between a local maximum and
the subsequent local minimum, another measure of risk. For example, a maximum
drawdown of 5 percent means that you lose 5 percent of your capital at some point.
You then need to make a 10 percent return to get back to your original amount of
capital. Clearly, a lower maximum drawdown is better.



e Value at Risk (VaR)

— Value at Risk is a risk metric that quantifies how much capital may be lost over a given
time frame with some probability, assuming normal market conditions. For example, a
1-day 5 percent VaR of 10 percent means that there is a 5 percent chance that you may
lose more than 10 percent of an investment within a day.

3 Supervised Learning

Before looking at the problem from a Reinforcement Learning perspective, it would be helpful to
understand how to create a profitable trading strategy using a supervised learning approach. Look-
ing at the supervised learning approach will help to understand the problems with the approach
and help to make clear why to use Reinforcement Learning techniques.

The most obvious approach using supervised learning is price prediction. If the prediction is
that the market will move up, the reasonable action is to buy , and sell once the market has
moved. Or, equivalently, if the prediction is that the market goes down, it is reasonable to go
short (borrowing an asset that is not owned) and then buy once the market has moved. However,
there are a few problems with this approach. First of all, what price is actually predicted? As seen
above, there is not a “single” price to buy at. The final price paid depends on the volume available
at different levels of the order book, and the fees needed to be paid. A naive thing to do is to
predict the mid price, which is the mid-point between the best bid and best ask. That’s what most
researchers do. However, this is just a theoretical price, not something we can actually execute
orders at, and could differ significantly from the real price we’re paying. The next question is time
scale. Do we predict the price of the next trade? The price at the next second? Minute? Hour?
Day? Intuitively, the further in the future we want to predict, the more uncertainty there is, and
the more difficult the prediction problem becomes. Let’s look at an example. Let’s assume the
BTC (bitcoin) price is 10,000 and we can accurately predict that the “price” moves up from 10,000
to 10,050 in the next minute. So, does that mean its possible to make 50 of profit by buying and
selling? The following points hope to explain why it would not be easy.

e We buy when the best ask is 10,000. Most likely we will not be able to get all our 1.0 BTC
filled at that price because the order book does not have the required volume. We may be
forced to buy 0.5 BTC at 10,000 and 0.5 BTC at 10,010, for an average price of 10,005.
On most brokerage platforms, we also pay a 0.3 percent taker fee, which corresponds to 30
roughly

e The price is now at 10,050, as predicted. We place the sell order. Because the market moves
very fast and volatile, by the time the order is delivered over the network the price has slipped
already. Let’s say it’s now at 10,045. Similar to above, we most likely cannot sell all of the
1 BTC at that price. Perhaps we are forced to sell 0.5 BTC are 10,045 and 0.5 BTC at
10,040, for an average price of 10,042.5. Then we pay another 0.3 percent taker fee, which
corresponds to roughly 30.

So, a total of -10005 - 30 - 30 + 10,042.5 = -22.5. Instead of making 50, we have lost 22.5, even
though we accurately predicted a large price movement over the next minute. In the above example
there were three reasons for this: No liquidity in the best order book levels, network latencies, and
fees, none of which the supervised model could take into account. What is the lesson here? In
order to make money from a simple price prediction strategy, we must predict relatively large price
movements over longer periods of time, or be very smart about our fees and order management.
And that’s a very difficult prediction problem. We could have saved on the fees by using limit
instead of market orders, but then we would have no guarantees about our orders being matched,
and we would need to build a complex system for order management and cancellation. But there’s
another problem with supervised learning: It does not imply a policy. In the above example we
bought because we predicted that the price moves up, and it actually moved up. Everything went
according to plan. But what if the price had moved down? Would you have sold? Kept the
position and waited? What if the price had moved up just a little bit and then moved down again?
What if we had been uncertain about the prediction, for example 65 percent up and 35 percent
down? Would you still have bought? How do you choose the threshold to place an order? Thus,
you need more than just a price prediction model (unless the model is extremely accurate and



robust). We also need a rule-based policy that takes as input the price predictions and decides
what to actually do: Place an order, do nothing, cancel an order, and so on. How do we come
up with such a policy? How do we optimize the policy parameters and decision thresholds? The
answer to this is not obvious, and many people use simple heuristics or human intuition.

3.1

A Typical Strategy Development Workflow

There are solutions to many of the above problems however, they are not very effective. Let’s look
a typical workflow for trading strategy development. It looks something like this:

Data Analysis: Perform exploratory data analysis to find trading opportunities. Looking at
various charts, calculating data statistics, and so on. The output of this step is an “idea” for
a trading strategy that should be validated.

Supervised Model Training: If necessary, training one or more supervised learning models to
predict quantities of interest that are necessary for the strategy to work. For example, price
prediction, quantity prediction, etc.

Policy Development: Developing a rule-based policy that determines what actions to take
based on the current state of the market and the outputs of supervised models. Note that
this policy may also have parameters, such as decision thresholds, that need to be optimized.
This optimization is done later.

Strategy Backtesting: Use of a simulator to test an initial version of the strategy against a
set of historical data. The simulator can take things such as order book liquidity, network
latencies, fees, etc into account. If the strategy performs reasonably well in backtesting, the
next step is to do parameter optimization.

Parameter Optimization: It is possible now perform a search, for example a grid search, over
possible values of strategy parameters like thresholds or coefficient, again using the simulator
and a set of historical data. Here, overfitting to historical data is a big risk, and it is required
that we be careful about using proper validation and test sets.

Simulation and Paper Trading: Before the strategy goes live, simulation is done on new
market data, in real-time. That’s called paper trading and helps prevent overfitting. Only if
the strategy is successful in paper trading, it is deployed in a live environment.

Live Trading: The strategy is now running live on an exchange.

The above mentioned pipeline is a complex process but not very effective. There are a couple of
reasons.

Iteration cycles are slow. Step 1-3 are largely based on intuition, and it is not known if
the strategy works until the optimization in step 4-5 is done, possibly forcing you to start
from scratch. In fact, every step comes with the risk of failing and forcing you to start from
scratch.

Simulation comes too late. environmental factors such as latencies, fees, and liquidity are
not explicitly taken into account until step 4. These things should directly inform the strategy
development or the parameters of the model.

Policies are developed independently from supervised models even though they interact
closely. Supervised predictions are an input to the policy.It would make sense to jointly
optimize them.

Policies are simple. They are limited to what humans can come up with.

Parameter optimization is inefficient. For example, assume the optimization process is for a
combination of profit and risk, and the goal is to find parameters that give you a high Sharpe
Ratio. Instead of using an efficient gradient-based approach, an inefficient grid search is being
deployed and in the hope that the process will find something good (while not overfitting).



4 Deep Reinforcement Learning for Trading

The traditional Reinforcement Learning problem can be formulated as a Markov Decision Process
(MDP). We have an agent acting in an environment. Each time step the agent receives as the input
the current state , takes an action , and receives a reward and the next state . The agent chooses
the action based on some policy . The goal is to find a policy that maximizes the cumulative
reward over some finite or infinite time horizon.

Agent

The agent in this context is the trading agent. The agent can be compared to a human trader
who opens the GUI of an exchange and makes trading decision based on the current state of the
exchange on his or her account.

Environment

The exchange is our environment. The important thing to note is that there are many other agents,
both human and algorithmic market players, trading on the same exchange. Let’s assume that
actions are being taken on a minutely scale (more on that below). Some action is taken, wait a
minute, get a new state, take another action, and so on. When a new state is observed, it will be
the response of the market environment, which includes the response of the other agents. Thus,
from the perspective of our agent, these other agents are also part of the environment. They’re not
under our control. However, by putting other agents together into some big complex environment
the ability to explicitly model them is lost. For example, one can imagine an agent to learn to
reverse-engineer the algorithms and strategies that other traders are running and then learn to
exploit them. Doing so would put us into a Multi-Agent Reinforcement Learning (MARL) prob-
lem setting, which is an active research area. For simplicity,its best to assume that our agent is
interacting with a single complex environment that includes the behavior of all other agents.

State

In the case of trading on an exchange, it is not possible to observe the complete state of the en-
vironment. For example, it is not known about the other agents in the environment, how many
there are, what their account balances are, or what their open limit orders are. Therefore it is a a
Partially Observable Markov Decision Process (POMDP) that is being dealt with here. What the
agent observes is not the actual state of the environment, but some derivation of that. Let that
be known as the observation , which is calculated using some function of the full state . In this
case, the observation at each timestep is simply the history of all exchange events (described in the
data section above) received up to time . This event history can be used to build up the current
exchange state. However, in order for the agent to make decisions, there are a few other things
that the observation must include, such as the current account balance, and open limit orders, if
any.

Time Scale

It is important to decide what time scale to act on. Days? Hours? Minutes? Seconds? Millisec-
onds? Nanoseconds? Variables scales? All of these require different approaches. Someone buying
an asset and holding it for several days, weeks or months is often making a long-term bet based
on analysis, such as “Will Bitcoin be successful?”. Often, these decisions are driven by external
events, news, or a fundamental understanding of the assets value or potential. Because such an
analysis typically requires an understanding of how the world works, it can be difficult to auto-
mate using Machine Learning techniques. On the opposite end, we have High Frequency Trading
(HFT) techniques, where decisions are based almost entirely on market microstructure signals.
Decisions are made on nanosecond timescales and trading strategies use dedicated connections to
exchanges and extremely fast but simple algorithms running of FPGA hardware. Another way
to think about these two extremes is in term of “humanness”. The former requires a big picture
view and an understanding of how the world works, human intuition and high-level analysis, while
the latter is all about simple, but extremely fast, pattern matching. Neural Networks are popular
because, given a lot of data, they can learn more complex representations than algorithms such as
Linear Regression or Naive Bayes. But Deep Neural Nets are also slow, relatively speaking. They
can’t make predictions on nanosecond time scales and thus cannot compete with the speed of HFT
algorithms. Therefore I believe the sweet spot is somewhere in the middle of these two extremes.



It is best to act on a time scale where we can analyze data faster than a human possibly could,
but where being smarter allows the algorithm to beat the “fast but simple” algorithms. My guess
is that this corresponds to acting on timescales somewhere between a few milliseconds and a few
minutes. Humans traders can act on these timescales as well, but not as quickly as algorithms.
And they certainly cannot synthesize the same amount of information that an algorithm can in
that same time period. That’s the advantage we gain. Another reason to act on relatively short
timescales is that patterns in the data may be more apparent. For example, because most human
traders look at the exact same (limited) graphical user interfaces which have pre-defined market
signals their actions are restricted to the information present in those signals, resulting in certain
action patterns. Similarly, algorithms running in the market act based on certain patterns. My
hope is that Deep RL algorithms can pick up those patterns and exploit them. Note that we could
also act on variable time scales, based on some signal trigger. For example, we could decide to
take an action whenever a large trade occurred in the market. Such as trigger-based agent would
still roughly correspond to some time scale, depending on the frequency of the trigger event.

Action Space

In Reinforcement Learning,there is a distinction between discrete (finite) and continuous (infinite)
action spaces. Depending on how complex the agent should be, there are a couple of choices here.
The simplest approach would be to have three actions: Buy, Hold, and Sell. That works, but it
limits to placing market orders and to invest a deterministic amount of money at each step. The
next level of complexity would be to let the agent learn how much money to invest, for example,
based on the uncertainty of our model. That would put it into a continuous action space, as we
need to decide on both the (discrete) action and the (continuous) quantity. An even more complex
scenario arises when we want our agent to be able to place limit orders. In that case our agent
must decide the level (price) and the quantity of the order, both of which are continuous quantities.
It must also be able to cancel open orders that have not yet been matched.

Reward Function

There are several possible reward functions we can pick from (referring to the metrics mentioned
earlier). An obvious one would the Realized PnL (Profit and Loss). The agent receives a reward
whenever it closes a position, e.g. when it sells an asset it has previously bought, or buys an asset
it has previously borrowed. The net profit from that trade can be positive or negative. That’s
the reward signal. As the agent maximizes the total cumulative reward, it learns to trade prof-
itably. This reward function is technically correct and could lead to the optimal policy in the limit.
However, rewards are sparse because buy and sell actions are relatively rare compared to doing
nothing. Hence, it requires the agent to learn without receiving frequent feedback. An alternative
with more frequent feedback would be the Unrealized PnL, which the net profit the agent would
get if it were to close all of its positions immediately. For example, if the price went down after
the agent placed a buy order, it would receive a negative reward even though it hasn’t sold yet.
Because the Unrealized PnL. may change at each time step, it gives the agent more frequent feed-
back signals. However, the direct feedback may also bias the agent towards short-term actions
when used in conjunction with a decay factor. Both of these reward functions naively optimize for
profit. In reality, a trader may want to minimize risk. A strategy with a slightly lower return but
significantly lower volatility is preferably over a highly volatile but only slightly more profitable
strategy. Using the Sharpe Ratio is one simple way to take risk into account, but there are many
others. We may also want to take into account something like Maximum Drawdown, described
above. One can image a wide range of complex reward function that trade-off between profit and
risk.

5 Reinforcement Learning vs Traditional methods

In the following section, I hope to explain how Reinforcement Learning is better and why to use
it over supervised techniques. Developing trading strategies using RL could result in a pipeline
which is much simpler, and more principled than the approach we saw in the previous section.

End-to-End Optimization
In the traditional strategy development approach there are several steps before we get to the metric
we actually care about. For example, to find a strategy with a maximum drawdown of 25 per-



cent, it is needed to train a supervised model, come up with a rule-based policy using the model,
backtest the policy and optimize its hyper-parameters, and finally assess its performance through
simulation. Reinforcement Learning allows for end-to-end optimization and maximizes (potentially
delayed) rewards. By adding a term to the reward function, it is possible to directly optimize for
this drawdown, without needing to go through separate stages. For example, imagine giving a
large negative reward whenever a drawdown of more than 25 percent happens, forcing the agent
to look for a different policy. Of course, we can combine drawdown with many other metrics. This
is not only easier, but also a much more powerful model.

Learned Policies

Instead of needing to hand-code a rule-based policy, Reinforcement Learning directly learns a pol-
icy. There’s no need to specify rules and thresholds such as “buy when you are more than 75
percent sure that the market will move up”. That’s inherent in the RL policy, which optimizes
for the metric. Also because the policy can be parameterized by a complex model, such as a deep
neural network, it is possible to learn policies that are more complex and powerful than any rules
a human trader could possibly come up with. And as we’ve seen above, the policies implicitly take
into account metrics such as risk, if that’s something we’re optimizing for.

Trained directly in Simulation Environments

It was required to have separate backtesting and parameter optimization steps because it was dif-
ficult for the strategies to take into account environmental factors, such as order book liquidity,
fee structures, latencies, and others, when using a supervised approach. It is not uncommon to
come up with a strategy, only to find out much later that it does not work, perhaps because the
latencies are too high and the market is moving too quickly so that it is not possible to get the
trades that was expected. Since Reinforcement Learning agents are trained in a simula-
tion, and that simulation can be as complex as desired, taking into account latencies,
liquidity and fees, we possibly will not have this problem. Getting around environ-
mental limitations is part of the optimization process. For example, if we simulate
the latency in the Reinforcement Learning environment, and this results in the agent
making a mistake, the agent will get a negative reward, forcing it to learn to work
around the latencies. It is possible to take this a step further and simulate the response of
the other agents in the same environment, to model impact of our own orders, for example. If
the agent’s actions move the price in a simulation that’s based on historical data, we don’t know
how the real market would have responded to this. Typically, simulators ignore this and assume
that orders do not have market impact. However, by learning a model of the environment and
performing roll-outs using techniques like a Monte Carlo Tree Search (MCTS), we could take into
account potential reactions of the market (other agents). By being smart about the data we collect
from the live environment, we can continuously improve our model. There exists an interesting
exploration/exploitation trade-off here: Do we act optimally in the live environment to generate
profits, or do we act sub optimally to gather interesting information that we can use to improve
the model of our environment and other agents? That’s a very powerful concept. By building
an increasingly complex simulation environment that models the real world you can train very
sophisticated agents that learn to take environment constraints into account.

Learning to adapt to market conditions

Intuitively, certain strategies and policies will work better in some market environments than oth-
ers. For example, a strategy may work well in a bearish environment, but lose money in a bullish
environment. Partly, this is due to the simplistic nature of the policy, which does not have a
parameterization powerful enough to learn to adapt to changing market conditions. Because RL
agents are learning powerful policies parameterized by Neural Networks, they can also learn to
adapt to various market conditions by seeing them in historical data, given that they are trained
over a long time horizon and have sufficient memory. This allows them to be much more robust to
changing markets. In facts, we can directly optimize them to become robust to changes in market
conditions, by putting appropriate penalties into the reward function.

Ability to model other agents
A unique ability of Reinforcement Learning is that we can explicitly take into account other agents.
So far we’ve always talked about “how the market reacts”, ignoring that the market is really just a



group of agents and algorithms, just like us. However, if we explicitly modeled the other agents in
the environment, our agent could learn to exploit their strategies. In essence, we are reformulating
the problem from “market prediction” to “agent exploitation”. This is much more similar to what
we are doing in multiplayer games, like DotA.

6 RL trading agent research

The goal with this brief report on Reinforcement Learning for Trading is also to convince more
researchers to take a look at the problem. The following makes trading an interesting research
problem.

Live Testing and Fast Iteration Cycle

When training Reinforcement Learning agents, it is often difficult or expensive to deploy them in
the real world and get feedback. For example, if an agent is trained to play Starcraft 2, how would
you let it play against a larger number of human players? Same for Chess, Poker, or any other
game that is popular in the RL community. You would probably need to somehow enter a tour-
nament and let the agent play there. Trading agents have characteristics very similar to those for
multi-player games. It is possible to test them live by deploying the agent on an exchange through
their API and immediately get real-world market feedback. If the agent does not generalize and
loses money you know that you have probably over-fit to the training data. In other words, the
iteration cycle can be extremely fast.

Large Multi-player Environments

The trading environment is essentially a multi-player game with thousands of agents acting simul-
taneously. This is an active research area and is making progress at multi-player games such as
Poker, Dota2, and others, and many of the same techniques will apply here. In fact, the trading
problem is a much more difficult one due to the sheer number of simultaneous agents who can
leave or join the game at any time. Understanding how to build models of other agents is only one
possible direction one can go into. As mentioned earlier, one could choose to perform actions in a
live environment with the goal maximizing the information gain with respect to kind policies the
other agents may be following.

Learning to Exploit other Agents and the Market

Closely related is the question of whether we can learn to exploit other agents acting in the environ-
ment. For example, if we knew exactly what algorithms were running in the market we can trick
them into taking actions they should not take and profit from their mistakes. This also applies to
human traders, who typically act based on a combination of well-known market signals, such as
exponential moving averages or order book pressures. Disclaimer: The agent should not be allowed
to do anything illegal. It is required that we comply with all applicable laws in our jurisdiction.
Also, past performance is no guarantee of future results.

Sparse Rewards and Exploration

Trading agents typically receive sparse rewards from the market. Most of the time the agent will
do nothing. Buy and sell actions typically account for a tiny fraction of all actions taken. Naively
applying “reward-hungry” Reinforcement Learning algorithms will fail. This opens up the possibil-
ity for new algorithms and techniques, especially model-based ones, that can efficiently deal with
sparse rewards. A similar argument can be made for exploration. Many of today’s standard algo-
rithms, such as DQN or A3C, use a very naive approach to exploration, basically adding random
noise to the policy. However, in the trading case, most states in the environment are bad, and
there are only a few good ones. A naive random approach to exploration will almost never stumble
upon those good state-actions pairs. A new approach is necessary here.

Multi-Agent Self-Play

Similar to how self-play is applied to two-player games such as Chess or Go, one could apply
self-play techniques to a multi-player environment. For example, simultaneously training a large
number of competing agents, and investigate whether the resulting market dynamic somehow re-
sembles the dynamics found in the real world. It is possible also mix the types of agents that
are training, from different RL algorithms, the evolution-based ones, and deterministic ones. One



could also use the real-world market data as a supervised feedback signal to “force” the agents in
the simulation to collectively behave like the real world.

Continuous Time

Markets change on micro- to milliseconds times scales, the trading domain is a good approximation
of a continuous time domain. In the previous example above time period is fixed and made that
decision for the agent. However, imagine making this part of the agent training. Thus, the agent
would not only decide what actions to take, but also when to take an action. Again, this is an
active research area useful for many other domains, including robotics.

Non stationary, Lifelong Learning, and Catastrophic Forgetting

The trading environment is inherently non stationary. Market conditions change and other agent
join, leave, and constantly change their strategies. Is it possible to train agents that learn to
automatically adjust to changing market conditions, without “forgetting” what they have learned
before? For example, can an agent successfully transition from a bear to a bull market and then
back to a bear market, without needing to be re-trained? Can an agent adjust to other agent
joining and learning to exploit them automatically?

Transfer Learning and Auxiliary Tasks

Training Reinforcement Learning from scratch in complex domains can take a very long time be-
cause they not only need to learn to make good decisions, but they also need to learn the “rules
of the game”. There are many ways to speed up the training of Reinforcement Learning agents,
including transfer learning, and using auxiliary tasks. For example, we could imagine pre-training
an agent with an expert policy, or adding auxiliary tasks, such as price prediction, to the agent’s
training objective, to speed up the learning.

7 Conclusion

The goal of this very brief report was to make an argument for Reinforcement Learning based
trading agents and why they are superior to current trading strategy development models, and
make an argument for why I believe more researchers should be working on this.



	Introduction
	A few trading strategy metrics
	Supervised Learning
	A Typical Strategy Development Workflow

	Deep Reinforcement Learning for Trading
	Reinforcement Learning vs Traditional methods
	RL trading agent research
	Conclusion

